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SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

G. D. LUDDEN

1. Introduction

Recently B. Smyth [6] has classified those complex Einstein hypersurfaces
of a Kaehler manifold of constant holomorphic curvature. This paper was
followed by the papers of Chern {2], Nomizu.and Smyth [4], Kobayashi [3]
and others researching this problem. Yano and Ishihara [7] have studied the
analogous problem for Sasakian manifolds, i.e., they have studied invariant
Einstein (or z-Einstein) submanifolds of codimension 2 of a normal contact
manifold of constant curvature. The result of Smyth rests on the fact that the
hypersurface is locally symmetric. We show in this paper that a normal contact
manifold which is y-Einsteinian but not Einsteinian cannot be locally sym-
metric. Thus, since an invariant submanifold of codimension 2 in a normal
contact manifold is itself a normal contact manifold, the »-Einstein case studied
by Yano and Ishihara will not yield to a study similar to that of Smyth.

Let M be a normal contact manifold or a cosymplectic manifold of constant
&-sectional curvature, and M an invariant submanifold of codimension 2. The
main purpose of this paper is to study the case where M is 7-Einsteinian. In
particular, we show that if M is cosymplectic then M is locally symmetric.
This suggests that a classification similar to that of Smyth may be obtained in
this case.

2. Almost contact manifolds
Let M be a C>-manifold and ¢ a tensor field of type (1, 1) on M such that
¢~2 = '—I + é ® 77 ’

where I is the identity transformation, & a vector field, and 7 a 1-form on M
satisfying ¢ = 704 = 0 and 7€) = 1. Then M is said to have an almost
contact structure. It is known that there is a positive definite Riemannian
metric § on M such that g(3X,Y) = —g(X,3Y) and g(£,£) = 1, where X
and Y are vector fields on M. Define the tensor @ by dX,Y) = g(X, 3Y).
Then @ is a 2-form. If [§, ] + di ® & = O, where [§, $1(X,Y) = $U[X, Y]
+[3X, Y] — $ldX, Y] — (X, $Y], then the almost contact structure is said
to be normal. If = djj, the almost contact structure is a contact structure.
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A normal almost contact structure such that @ is closed and d7j = 0 is called
cosymplectic structure. It can be shown [1] that the cosymplectic structure is
characterized by

.1 Py =0 and Fej=0,

where V/ is the connection of g. Henceforth, we assume M possesses a normal
contact (Sasakian) structure or a cosymplectic structure. We note here that in
a Sasakian manifold

(2.2) VxY = H(NX — X, Y)E .

The curvature operator R of g is defined by Ry, Z = Ve VylZ — ﬁ[X,Y]Z
and the Ricci tensor § is the trace of the mapping X — Ry, W. If X and Y
form an orthonormal basis of a 2-plane of M, the sectional curvature K(X,Y)
of this plane is given by g(RyyX, ¥). If X is a unit vector which is orthogonal
to £, we say that X and X span a §-section. If the sectional curvatures K(X)
of all $-sections are independent of X, we say M is of constant ¢-sectional
curvature. It has been shown that in a normal contact manifold or a
cosymplectic manifold of constant $-sectional curvature C, ’

ERZ, W) = a{2(X, (Y, W) — 8(X, W)g(Y, Z)}
+ BIXIMNEZ, Y) + HDHY)EX, W) — (X)X, W)
— ANTMEX, Z) + BX, WDZ,Y) — X, Z)PW,Y)
+ 20X, Y)H(Z, W)},

2.3

where o = (C + 3)/4 and § = (C — 1)/4 is the normal contact case and
a=p=C/4 in the cosymplectic case. This formula was shown for the normal -
contact case by Ogiue [5] and for the cosymplectic case by D. E. Blair
(unpublished). We also note that the Ricci tensor is given by

(2.4 SX,Y) = a*g(X, Y) — pF(X0N(Y) ,

where a* = (noe + p)2 and g* = 2(n + 1)B in the normal contact case and
a* = g* = 2(n + e in the cosymplectice case. Here the dimension of M is
~ assumed to be2n + 1.

3. Invariant submanifolds

Let M be a submanifold of codimension 2 imbedded in M by i: M — M.
We will assume that M is invariant under &, i.e., for every tangent vector X
of M there is a vector Y tangent to M such that $i, X = i, Y. Henceforth, we
will use X, Y, - - to represent tangent vectors to either M or M, the meaning
being clear. Thus, there is a vector & tangent to M such that i, & = & (restricted
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to i(M)). It is easy to show that there are tensors ¢, 5 and g defined on M by
GinX = i, 90X, 7(1,X) = »(X) and 3(i, X, i, Y) = gX,Y). Then

I (X)) = ¢i, X = ¢4, X = —i, X + 71, X)€ = i (=X + (X)) .

Also, 7(8) = §(i48) = (&) = 1, 1,(p8) = §iuf = $& =0, and 7($X) = §(iypX)
= 7(pi,X) = 0. We can then see that g(¢X,Y) = —g(X, ¢Y) and g(¢, &) = 1.
Thus, we have the following theorem.

Theorem 3.1 (Yano & Ishihara [71). ($,&,7) is an almost contact
structure on M with g as an associated metric.

If we let @(X,Y) = g(X, ¢Y), then &G X,i,Y) = §(i. X, $i,Y) =
8 X, 1,0Y) = g(X, ¢Y) = &(X,Y). From the coboundary formula we see
that dy(X, Y) = d7(i,X,i,Y) and also that dO(X, Y, Z) = d®(i X, i,Y, i, Z).
From these identities we see that d7j = @ implies that dy = @. It is also
straightforward to show that [, d1(i, X, i, Y) = i.[é, ¢I(X, Y). Thus the
following propositions are clear.

Proposition 3.2 (Yano & Ishihara [71). If ¢ is a normal contact structure
on M, then $ is a normal contact structure on M.

Proposition 3.3. If ¢ is a cosymplectic structure on M, then ¢ is a cosym-
plectic structure on M.

Let C be a unit vector field defined on i(M) such that g(C, i, X) = 0 and
8(4C, i, X) = 0 for all X. Since M is invariant, it follows that such a C can
be found. Then we have

(3.4) VG, Y) = i,(FyY) + HX, Y)C + K(X, Y)éC ,

where F is the covariant derivative with respect to g, and H and K are
symmetric tensors of type (0,2) on M. H and K are called the second
fundamental tensors of M. Furthermore, we may write

VixC = —i(hX) + s(X)$C ,

G5 Vi 3C) = —i (kX)) — s(X)C ,

where s is a 1-form on M, g(hX,Y) = H(X,Y), and g(kX,Y) = K(X, Y).
Lemma 3.6. The following identities hold:
) HX,Y) = K(X,¢Y),
i) KX,Y)= —H(X,g¢Y).
Proof.

TixP)inY = Vix($iY) — ¢(7 20 Y)
et ﬁz‘*x(i*¢Y) - ?E(i*VXY + H(X, Y)C + K(X: Y)?NSC)
= i,(Fx¢Y) + H(X, ¢Y)C + K(X, $Y)IC — iy(¢V 1Y)
— H(X,Y)¢C — K(X,Y)(—C) .
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It can now be seen from (2.1) and (2.2) that (ﬁit_yé)l‘*y = i Z for some Z.
The lemma then follows by noting that we have used the fact that 7(C) = 0.
The identities of Lemma 3.6 show that

(3.8) hé = —gh .

From this it follows that tr # = tr k = 0. Here tr # denotes the trace of . We
also note that H(X, &) = 0 and K(X, &) = O for all X.

The following lemma is proved in [6].

Lemma 3.9. Let V be a 2n-dimensional real vector space with a complex
structure J and a positive definite inner product g which is hermitian (i.e.,
2= —I and gUX,JY) = g(X,Y)). If A is symmetric with respect to g and
AJ = —JA, there exists an orthonormal basis {e,, - - -, e,,Je, ---,Je,} of V
with respect to which the matrix of A is diagonal of the form
2 7

1

_11

—1,

This lemma and equation (3.8) then show that at each point m of M there
is an orthonormal basis {£, e, ---,e,_;, ¢e, ---,de,_,} of M,, the tangent
space of M at m, such that 4 at m is diagonal of the form

-2 -

(3.10) —4

_'271—1

with respect to this basis.

4. Main Theorems

The following Gauss-Codazzi equation for the curvature operator of M is
well-known and follows directly from equations (3.4) and (3.5).
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Ry vivisZ = i, [RyyZ — (H(Y, Z)hX — H(X, Z)hY)
— (K(Y, 2)kX — K(X, DkY)] + g((Fxh)Y — FTsh)X
— SOKY + s(VkX, Z)C + gk)Y — (70X
+ s(GORY — s(Y)hX, Z)§C .

“.1)

From this it follows that

S(X,Y) = S3G,X,i,Y) + tr hH(X,Y) — g(hX, hY)

4.2)

where S is the Ric¢i tensor on M. Because of Lemma 3.6, equation (4.2)
simplifies to

4.2y S(X,Y) = S(i X,i,Y) — 28(BX,Y) .

Lemma 4.3. If M is a cosymplectic manifold of constant $-sectional
curvature, then [V vh* = 0 implies that V .S = 0.
Proof. Using equation (2.4), equation (4.2)" simplifies

S(X,Y) = —(2+2—”9 @X, Y) — 7(Xn(Y) — 2e(HX, Y) ,

from which the lemma follows.

If we assume M is of constant ¢-sectional curvature, then (2.3) can be used
to show that ﬁiwﬁ‘yi*z is in fact tangent to M. Hence, the coefficients of C
in (4.1) must vanish, i.e.,

(4.3) T hY — )X — s(XOKY + s(Y)kX =0 .

The vanishing of the coefficient of ¢C adds nothing new. M is said to be
totally geodesic if H = K = 0.

Theorem 4.4. M is totally geodesic if and only if M is of constant
g-sectional curvature.

Proof. Let X be a vector orthogonal to &. Then from (4.1), we have that

8Ry 1 X, X) = (R, x 51, xPix X, 1, X) + H($X, X)H(X, $X)
+ H(X, X)H($X, X) + K(¢X, X)K(X, $X)
+ K(X, X)K($X, 9 X)
= 8(Rix 51xPi X, 1,.X) + 2(H(X, X) + KX, X)) .
Now §(i X, §) = g(X, &) so that if X is orthogonal to £ then i, X is orthogonal

to&. Hence, H=K =0 implies that M is of constant ¢-sectional curvature &.
Now assume that M is of constant ¢-sectional curvature. Then S(X,Y) =
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@*g(X,Y) — F*p(X)p(Y) for constants @* and g* by (2.4). Thus, by (4.2,

(4.5) h=al + bty

for appropriate constants a and b. Since A& = 0, we see that a + b = 0. Let
X = (e; + ge;)/v 2, where i # j and the e;’s are from the basis for M,,
mentioned after Lemma 3.9, Then g(X,X) = 1 and it can be shown that
g(Ry ,xX, ¢X) = ¢. This shows that H(X, X) = 0 and K(X, X) = 0 for all X.
However, since H and K are symmetric, we have that H = K = 0 and the
proof is finished.

Definition 4.6. Let (¢, £, , g) be an almost contact metric structure on a
manifold M. Then M is said to be y-FEinsteinian if S = ag + by & 7 for some
a and b, necessarily constants, where S is the Ricci tensor of M.

Definition 4.7. A manifold M is locally symmetric if 7 yR = 0 for all X.

Proposition 4.8. If M is a normal contact yp-Einsteinian but not
Einsteinian manifold, then M is not locally symmetric.

Proof. Certainly if 7 xR = 0 then VS = 0. However, from Definition 4.6,

FxSNY, Z) = bW x)(Y)(Z) + bp(Y)W x7)(Z) .

Therefore, since (F ynp)(Y) = dyp(X,Y) and dyn(§, X) = O for all X, we have
that

TxS)(¥,8) = bdp(X,Y) #0 .

Note that if M is of constant ¢-sectional curvature 1, then M is in fact of
constant curvature. Thus, we have the following crollary.

Corollary 4.9. If M is a normal contact manifold of constant ¢-sectional
curvature + 1, then M is not locally symmetric.

We now proceed to prove our main theorem.

Theorem 4.10. If M is a cosymplectic manifold of constant §-sectional
curvature and M is an invariant submanifold of codimension 2 of M which is
y-Einsteinian, then M is locally symmetric.

Lemma 4.11.

Vxh = s(X)k .
Proof of Lemma 4.11. By (4.3) we have that
VhY — Ty — s(OkY = 0.

However, (Fyh)§ = V(h&) — hVv& = 0. Thus V .k = s(&)k. If X is orthogonal
to £, the proof of Proposition 7 of [6] and the fact that (F y4)& = O show that
Vyh = s(X)k.

Now, since k = ¢h, we see that

Pk = Vo(gh) = ¢F xh = s(X)¢k = s(X)¢*h = —s(X)h .
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The following lemma is proved in [6].
Lemma 4.12, If M is an arbitrary Riemannian manifold with metric g,
then the tensor field P defined on M by

PX,Y,Z, W)= g(BX,Z)¢(BY, W),
where B is a tensor field of type (1, 1) on M, has covariant derivative given by
WvPYX, Y, Z, W) = g((VyB)X, Z)¢(BY, W) + g(BX, Z)s(P,B)Y, W) .

Proof of Theorem 4.11. Now let R(X,Y,Z, W) = g(RyyZ, W). By
equation (2.3), we see that (7, R)(X, Y, Z, W) = O since /& = 0 and I/ y5) = 0.
Let

DX,Y,Z,W) = g(hX, W)g(hY,Z) — g(hY, W)g(hX, Z)
+ kX, W)g(kY, Z) — g(kY, W)g(kX,Z) ,

so that R(i, X, i,Y,i,Z,i,W) = i,(R(X,Y,Z, W) — D(X, Y, Z,W)). Hence,
by Lemma 4.12,

VyDYX,Y,Z, W) = gV )X, W)g(hY, Z) + ghX, W)g((V,yh)Y, Z)
-~ 8(FyWY, W)g(hX,Z) — g(hY, W)g((V yh) X, Z)
+ 8Pk X, W)gkY, Z) + gkX, W)g(Wvk)Y, Z)
— g(Fyk)Y, W)gkX, Z) — g(kY, W)g((Fvk) X, Z)
= s(V){g(kX, W)g(hY, Z) + ghX, W)g(kY, Z)
— gkY W)g(hX,Z) — g(hY, W)g(kX, Z)
C— gthX, Wg(kY,Z) — g(kX, W)g(hY, Z)
+ g(hY, W)glkX, Z) + g(kY, W)g(hX, Z)}
=0.

Thus, the proof is finished.

Assume now that M is a normal contact manifold. Again we have that
RG.X,i,Y,i,Z,i,W) = i ,(RX,Y,Z,W) — D(X,Y,Z,W)). If M is of
constant curvature, then I/, R = 0. (If we merely assume that A is of constant
$-sectional curvature then R can be computed. It turns out to be a rather
long expression involving the &, 7 and g. Since we are interested in
(7i*y-1§)(z'*X, i Y, i Z, i,W), this can be expressed in terms of @, 7 and g.) If
M is Einsteinian, then (4.2) shows that g(A?2X,Y) = 1g(X,Y) for some A.
However, since A& = 0, we have A° = 0 and hence A = 0. Also &£ = 0 so
that M is totally geodesic and hence D = 0. Thus, VR = 0 (see [7]). It is
slightly more complicated to consider the case where M is »-Einsteinian. In this
case we have that F',,R # 0 (see [7]).
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